
ASYMPTOTIC AXISYMMETRIC SWIRLING JET OF IDEAL 
INCOMPRESSIBLE FLUID 

(ASUUPTOTIKA OSESiblMJ3TItICENOI ZAVIKEItENNOI STBUI 
IDEAL’NOI NESZIIIMAEMOI ZAIDKOSTI) 

PMM Vol. 29, No. 3, 1965, pp. 599 -603 

In. P. IVANILOV 

(Moscow) 

(Received Iuly 7, 1964) 

The behavior of axisymmctric swirling jets at large distances from their place of origin is 
considered. In certain cases the occurrence of surface waves (periodic expansion and con- 
traction of the jet) is possible. The analogous fact for plane jets was noticed in [I, 21. 

1. If we introdnce for consideration the stream function $ then, taking for the indepen- 

dent variables the quantities G, 1//, 8) and for the nqaired function the quantity y, where 

x is the distance along the axis of symmetry, y the distance from the axisof symmetry, and 

8 the polar angle, weobtain for axisymmetric flows of an ideal incompressible liquid the 

system [ 31 : 
1 yx 

UX zz- yy+ ’ % = - yyd, ’ 
(1.1) 

+ $ -& (2) - & (2) + 0 - y2F’ = 0 (1.2) 

+W)-F+$=O (1.3) 

Here us. uy and u,g arc the componentsof the velocity vector, and F and @ are arbit- 

rary fnnctfona of the one variable $, characterizing the specific energy and circulation of 

the flow. 

The boundary conditions are as follows. 

On the axi* of the jet 

Y = 0, $=O (1.4) 

If we consider the motionin dimensionless variables, taking for the unit of length a 

certain characteristic tbfckneaa of the jet h and the qoantity 9s = Q / 2x, where Q is the 

dischuge of the flaid, then on the free snrface we shall have $ = 1. Moreover, the pressure 

at the l urfaoa of the jet ia constant, and withont loss of generality can be taken as p = 0. 

Then (1.3) gives 
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7 + Q,” - 2yzF = 0 
% 

when 9 = i 
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2. At large distances from the place of origin we can assume that the jet has the form 

of a circular cylinder. For such a flow the required quantities do not depend upon x 

Y=t(ll), s,=a($) (2.1) 

To determine the functions u and t from (1.2) and (1.33 we have the system 

1 am’ 
u=q, UU’-F’+~=O, t (1) = 1, t (0) = 0 (2.2) 

Integrating the second equation (2.2). we obtain 

ZLz 

2 --F+ +~+~~dt=o - 

i 

From (1.3) and (2.8) the pressure is determined by the formula 

(2.3) 

t 02 

p=- I F dt 
t 

(2.4) 

From this we draw the following conclusions. In an irrotational jet (@ f 0) the pressure 

is constant. In a swirling jet the pressure at the axis of the jet is always less than the 

pressure at its periphery. This is confirmed by the formation of eddies at the centre of the 

jet. 

At the centre of the jet the velocity ug and the pressure can tend to infinity; in parti- 

cular, when CII (O)#O. Such flows will beknown as flows with axial vortices. For @ = const, 

u = 0 and F’= 0 we shall have a rectilinear threadlike vortex. 

Let us write down again the solution corresponding to an irrotational jet F’= @ = 0. In 

the dimensionless variables adopted it has the form 

U = 2, t = (lpf”, F = 2, @ = 0, p=o (2.5) 

3. In what follows it is convenient to take as the independent variable t = t ($) and set 

Y = t + 2 0, 4 (3.1) 

The equation for z (t, x) and the boundary conditions (1.3)-(1.5) can bewritten thus’: 

s - rr, au t + z a u (2 + rst f ZZJ =x a utz 

-- - mz, at (t + 2) (1 + ZJ + 1 + z1 at 
-- 2- 
1 + Zt at 1 + zt 

a utz 
-- 2zt + 22 

(3.2) 
Lx 

ax 1 + Zt ut F,’ = 0, z (0)= 0 

u2 (- 2z1 - zts + %%a) 

(i + rt)’ 
- 2 (22 -J- z2) F, - 2F, = 0 when t = 1 

’ Here we have made the substitution F (1) = FI (1) + F,; where Fs (1) corresponds to 
a jet having the form of a circular cylinder. Two jets with identical distributions of velocity 

(a) and vorticity (F’ and @) at a certain section have different specific energy F l xording 
to the shape of the free surface of the jet. From what followsit will be seen that F, I 
= 0 (2’ ). 
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4. Linearisation of the equations and boundary conditions (3.2) gives 

-& (t&J - ($- 2P) 2 = --u*tz,,, z (2, 0) = 0, zt + $ z = Owhent = 1 (4.11 

We shall seek the eigenfunctionsof (4.1) by separating the variables. Setting z = 

= T (I) X (xl, we obtain 

LT z &AT') +[@t - if - 241 T = 0) 
(4.2) 

T(0) = 0, T' (1) + 
2F (i) 
-qq T (1) = 0 (4.3) 

X”-flx=o 

Having a complete set of eigenfunctions of the problem (4.1) we can obtain in the linear 

formulation the solution of the problem of a jet with a given velocity distribution at two 

sections of the jet (one for the semibounded jet). The behavior of the jet dependson the 

nature of the spectrum of the boundary problem (4.2). 

If all the eigenvalues p of the problem (4.2) are positive, then, as isobvious from 

(4.3). the semibounded jet either expands without limit downstream (if it has expanded to 

a certain point, sufficiently far from the place of origin), or else it will contract, tending 

asymptotically to take a cylindrical form. The influence of conditions at the exit decays 

exponentially downstream. The asymptotic free surface of the jet as x -P 00 in the case of 

a discrete spectrum has the form 

Y = 1 -f- C exp(--Vii3+ 0 (exp(-J$G)) (PI > f-h > 0) 

Accordingly, the index of exponential contraction of the jet is equal to co, where 

h ia the smallest positive eigenvaluet of the problem (4.21. 

It is clear from (4.3) that wave modes do not arisein flows for which all the eigenvalues 

of (4.2) are positive. The presencein the spectrum of negative eigenvalues, however, leads 

to the occurrence of wave modes. Each negative eigenvalue will play the role of a critical 

numberg. Solutions corresponding to positive eigenvalues decrease rather rapidly, and at 

large distances from the origin the form of the jet is determined by the negative spectrum 

of the problem (4.2). If the negative spectrum is finite, then it cannot substantially change 

the form of the jet, inducing only sinusoidal changes in the form of the surface. If, however, 

the negative spectrum is unbounded, then the shape of the jet can be greatly altered. 

5. The boundary problem (4.2) is the Sturm-Liouville problem for the second order self- 

conjugate differential equation. It is easy to show that all of its eigenvalues are real. When 

F' < 0 they are all strictly positive, and wave modes do not occur in the jet. 

Negative eigenvalues (wave modes) can take place only when F’> 0 (the specific 

energy increases from the centre to the periphery of the jet), If ~1 is not an eigenvalue of 

the homogeneous boundary problem (4.2). then the inhomogeneous boundary problem 

t As is shown below, in the case when F’and u1 are meromorphic functionsof t (with a 
singular point when t = 01, the spectrum of the problem (4.2) is discrete. 

1 In plane irrotational flow the same role is played by the number c / r/s (c is the 

velocity of wave propagation, g is the acceleration due to gravity and h is the depth of the 

stream). 
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LT = aI (t, z), T (0) = 0, T’ (1) + $+ T (i) = U+ (2) (5.1) 

is always soluble; if however u = cc, is an eigenvalue (simple), then the condition for 

solubility of the boundary problem (5.1) is 
1 

s 
(Jr1 (x, t) T, (t) dt - 13 (1) T,, (1) % (1) = 0 (5.2) 

0 
where T,(t) is the eigenfunction of the problem (4.2) corresponding to the eigenvalue tr I n,,,. 

For a jet with an axial eddy the specific energy F at the axis of the jet can tend to 

infinity.’ We shall therefore assume that ua and F’ are meromorphic functions which in 

the neighborhood oft = 0 can be expanded in a Laurent series 

u2 = Ji” = 5 fktk (a, > 0) 
k=n k=m 

(m and n can be negative). 

Let us introduce the following results without proof. The spectrum of problem (4.2) is 

discrete. If m < n - 1, then for f, < 0 (the specific energy decreases from the axis of 

the jet) there is a finite number of negative eigenvalues, and for f, > 0 the spectrum con- 

tains an infinite number of negative eigenvalues. If m > n - 1, then writing c = I/, 

(n2 + 3) - 2fn_i 1 a,, we have for c > - ‘/4 a finite number of negative eigenvalues, 

whilst for c < - l/, the spectrum is unbounded on both sides. (The latter is possible 

only for flows in which the longitudinal velocity ax at the axis of the jet tends to infinity). 

The requirement T (0) = 0 gives the further condition that Zf,,_, / a,, < 1. 

6. The equations (3.2) enable us to determine waves of small amplitude on the surface 

of the swirling jet. The fact that vortices can be the reason for the appearance of waves 

was noted by M.A. Lavrent’ev and N.N. Moiseev [2,4]. W aves ariseon the surface of the 

jet in the case when (4.2) has negative eigenvalues. At very great distances from the place 

of origin the exponentially decaying terms can be neglected, and the jet will have an ex- 

pression of a wave-like profile. Let us consider an actual example 

u = 2, II, = t2, Q = 2a, F=-k((1-ta)+W+Z (6.1) 

The equations and boundary conditions of section 2 are satisfied. With a = k = 0 we 

obtain an irrotational jet (2.5). The equation (4.1) for the given case has the form 

-g @z*) - (f - kl) z + tzm = 0 

The substitution z = e-pxT (t) gives for the determination of T 
(6.3) 

1 (rT’)’ + [(k + pa) - +] T = 0, T (0) = 0, T’ (1) -I- (aa -I- 1) T (1) = 0 

The general solution of (6.2) has the form 
00 

t = @a, /A,,~ = s,,~ - k (6.4) 

Here J, is the Bessel function, and s n is a positive root of the equation 

sJ1’ (s) + (as + 1) J, (s) = 0 (6.5) 

r For example, for a circular vortex with the distribution 

24x = 0, @ = PO + I+, %l = PO I t + P1t F= -p@pPIIt’-p~a/t, p,= l-/h 
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The coefficients A, and B,, can be determined, knowing the distribution of velocities 

(s =gf (z) ) at two sectionsof the jet when z = x0 and x = x1. 

Waves arise on the surface of the jet when pu, < 0 (k > sm2) and have the wavelength 

I., = 2x / v/k - sma 

If, however, k < soa, where J@ is the smallest root of (6.5), then for unbounded exten- 

sion of the jet it is necessary to set A, I 0, then En are determined from the distribution 

a = ga (t) at a certain section of the jet. For sufficiently large x = x0 we can obtain an 

asymptotic representation of the form of the jet, substituting in (6.4) only the term corres- 

ponding to the smallest of the roots do. The free surface is accordingly described to a 

high degree of accuracy by the equation’ 

y = 1 + B exp (-- 1/Q - kz) 

For the irrotational jet u = k = 0 and, moreover, (6.5) simplifies to J, (s)=O, whioh 

agrees with the result obtained in [6], where several examples were consideredin detail 

of the actual representation of @ and F in the case when the spectrum of the problem (4.2) 

is positive (waves abrent from tbe surface of the jet). 

7. One of the interesting casesof wave modes on the surface of a jet is that of long 

waves. For long waves we can obtain au asymptotic solution of problem (3.2). using the 

methodof [I]. It is applicable to the given case if (4.2) has p z.0 as au eigenvalue. 

Char&g the circulation of the flow we can always achieve this. In fact, with fl = 0 and 

specified aa and F’, taking for To a particular solutionof (4.2) satisfying the first boundary 

condition, we can select F (1) so as to fulfil the second condition also. At the same time, 

we change the circulation @ by the quantity a1 so as not to change II and F’. For this it 

is sufficient to ensure that 1 + 2Q / QI = C exp(- @t).This equation has a root for any 

C. We can say therefore that the circulationof the flow is the cause of the change in the 

form of the jet. In the case considered in section 6, p = 0 is au eigenvalue of problem 

(4.2) if we set k = J'. 

Let us introduce in problem (3.2) a small parameter, setting E - 1/&x, and expand 

2 (E, t) in the form of a power series in e 

_: k 
h & zk 6 % F (1) = F, (1) + e2Fl 

k=l 

The quantity e characterizes the deviation of the energy F from the energy of a 

cylindrical jet Fe. To a first approximation we obtain 

x1 = C (E) T, 0) (7.1) 

Here Ta (8) is the eigenfunction of problem (4.2) corresponding to the eigenvalue 

p I-0. 

For the second approximation we have __ 

L (4 = @l (4 z-2 (0) = 0, za’ (1) + 2H z2 (1) = cl)3 (z;, (7.2) 

r A similar method for thaplane irrotational jet gives for the exponent of the exponen- 
tial contraction of the jet the value Jo =+r, as follows from the Mitchell-Zhukovski 

formulae 131. 
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Here 

l? b) = - 4 Ft’ -J+ 3tq%d + f (- 2s - taat + 2tqs 9 3FzfZ#) 
(7.3) 

Substituting in (7.3) the quantity I~ from (7.1), we obtain from the condition of solu- 

bility (5.2) of the inhomogeneous boundary problem an equation determining C (5). 

Let us introduce the symbola y and p by the following relations 

u’tTfdt, 

0 

rt 379 = \ 8 (Td T& - (7 - FO TO’ (I) 
0 

) 

(r < 0, and T,, (f),withont loss of generality, can be taken an positive, and the sign on the 

left-hand side can be chosen as the sign on the right). Moreover, let ua choose FI to satisfy 

the relations TO (1) F, = F 47~~. 

For the determination of C (0 we shall have the equation 

2c” f 3paC%T 4p9*= 0 

having the solution 

C = f 2 CnS (p&f I V-z) 

(7.4) 

Transforming back to the old varicibles, with an accuracy of 0 (e*) we obtain 

y = 1 f JET, (t) CM’ (p viz, 1 / @ (7.5) 

The free surface is obtained by setting t = 1 in (7.5). 

Accordingly, a one-parameter family of flows is obtained; the parameter of the flow is 

related to the amplitudeof the wave a by the relation e = a / 2T, (1). (We notice that for 

gravitational waves in the plane case there is a two-parameter family of flows [1,2] ). The 

length of the wave, if by this we understand the distance between two adjacent crests 

(troughs), is determined by the formula 

A=--- p;gK & -~‘~, or l.-_,p ( 1 -- 1.85 (2T$) )” (7.6) 

Comparing (7.8) with the condition determining FI we see that if for the characteristic 

dimension we choose the minimum thickness of the jet (upper sign), then FI > 0, i.e., the 

specific energy of the wave motion is greater than the specific energy of the parallel flow 

with the same F’, Us and thickness of jet. If for the characteristic dimension we take the 

maximum thickness of the jet, then F, < 0 and the specific energy of the wavy jet is leaa. 

The difference in the specific energies is of order ul, 

When p = 0 equation (7.4) has no periodic solution. This doesnot eignify, however, 

that no flow modes exist other than trivial ones. In this case it is necessary to seek the 

solution of (3.2) using iractional powers of e, applying the methodof [7]. 

The author is indebted to V.B. Lidskom and N.N. Moiseev for their helpful advice. 
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